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Abstract—The increasing complexity in today’s products 

require an ever more systematic product development process 

in which the use of model-based systems engineering (MBSE) 

plays an increasingly decisive role, especially against the 

background of cross-disciplinary collaboration. Having 

evaluated the actual state of the art, many companies still have 

true difficulties when modeling the functional architecture with 

the help of actual approaches. Thus, a new procedure with 

concrete guiding rules and control criteria to strategically define 

and decompose functions for the two perspectives a greenfield 

and brownfield environment is theoretically introduced and 

partly applied to a practical example. 

Keywords—model-based systems engineering, functional 
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I. INTRODUCTION AND MOTIVATION 

Today, the networking of the physical world of machines, 
plants and devices with the virtual world of the internet (so-
called cyberspace) is progressing ever faster [1]. Thus, 
modern advanced systems are more and more equipped with 
sensors and electronics, for example, to allow statements on 
predictive maintenance to improve operating times. Apart 
from the steadily increase of requirements on products, 
systems and processes (e.g., by customer expectations, legal 
restraints and corporate objectives) as well as the growing 
globalization and micro-segmentation of markets with its 
competitive complexity of the entire value chain of 
companies, the development of cyber-physical systems faces 
notable and hitherto unknown challenges. As a result, model-
based systems engineering (MBSE) is becoming more and 
more established to satisfactorily manage complexity, 
facilitate scalability, assure traceability and maintain 
consistency during the early phase of system development. 

Despite the numerous approaches regarding a systematic 
application of MBSE (e.g., OOSEM [2, 3], SYSMOD [4], 
FAS [5]) [6] and related concepts elaborating a functional 
reference architecture (e.g., via functional chain analysis [7, 8, 
9]), the functional architecture – as an essential view of the 
system architecture [10] – has not yet been illuminated to the 
extent that a truly focused guide is available to define and 
decompose functions. Moreover, the approaches assume that 
either a pure new design in form of a greenfield approach is 
present or that reverse engineering is the focus, and thus 
mainly neglecting to address the most commonly used mixture 
of both, i.e. a given base architecture [11] within the 

philosophy of a product generation engineering [12]. So, when 
modeling the functional architecture of complex systems, 
many companies have true difficulties [13] especially in 
conducting a systematic functional decomposition while 
generally asking: 

• How many subfunctions should a function be divided 
into? When is it too much? And up to which level is it 
needed at all?  

• How to "cut" functions in general and which 
information can be used to do so? Is there a difference 
for greenfield or brownfield projects? 

• To which system level does a particular function 
belong? And to which logical elements should the 
functions be allocated? 

Accordingly, and mainly focusing on the second question, 
this contribution targets the general establishment of a 
guidance document leading to a stepwise elaboration of a 
functional architecture depending on possible conditions and 
specifications in the respective context. After presenting the 
actual state of the art (section 2) and introducing the basic 
procedure with systematic guidelines for the functional 
definition and decomposition (section 3), section 4 applies 
selected rules and advices in various parts of the introduced 
validation example. By giving a discussion and outlook in the 
end (section 5), the presented approach is critically being 
reviewed and further boundary aspects are listed that could 
slightly lead to an adjusted procedure of decomposing the 
functional architecture. 

II. STATE OF THE ART – FUNCTIONAL ARCHITECTURE IN 

MBSE 

Starting with the fundamentals of product design, almost 
all systematic development processes follow the four-stage 
procedure of task clarification, conceptual design, 
embodiment design and detail design [14]. Here, and given the 
fact that the notion of function is central to design but can be 
interpreted in multiple ways [15], the systematic modeling of 
the functional architecture can be assigned to the conceptual 
design and provides a functional understanding of a system 
without showing how the system is able to do this and 
reflecting the current functional state or its behavior being 
currently active. Thus, the functional architecture can be 
defined as the entity of functions of a system and its structured 
breakdown including described relationships/interactions 



between functions. In addition, the functional architecture can 
also have a static and dynamic representation, where the first 
represents the functions and their interactions without 
information about the conditions and timing, and the second 
also represents the time sequence in which the functions are 
executed with a possible link to the behavioral model. 

Divided into individual system functions identified from 
use cases and their scenarios, each system function is initially 
defined from a black-box perspective on the system, and thus 
states an abstract description of what the system shall do (i.e. 
defines a solution-neutral description of the relationship 
between input, output and state variables of a system with the 
objective of fulfilling a task [16]) before more concrete 
functions can be described in various, subdivided 
decomposition levels deepening the understanding of the 
system. Notwithstanding the pursued advocation of an as long 
as possible maintained solution neutrality [14], the 
hierarchical decomposition of the system functions into 
functions of subsystems and components is in practice often 
done in association with the elaboration of logical elements 
since subfunctions at least partly depend on taken embodiment 
decisions. As a result, and as already partly indicated above, 
the generation of a functional architecture consists of both a 
specific definition of a function and a decomposition strategy.  

To do so, and compared to the preceding identification 
process to generally find and indicate capabilities or tasks of a 
system, different approaches define specific conventions to 
systematically name a function by using a “verb + 
object/flow”. Starting with the more elementary and strictly 
scheme by Pahl/Beitz [14] or Hundal [17], Hirtz et al. [18] 
recommend a broader and nowadays well-known functional 
basis representation for functions and flows, see Fig. 1. 
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Fig. 1. Excerpt from the classification of functions by Hirtz et al. [18] 

Having understood this systematic definition process, the 
basic idea of defining top level system functions and then 
decomposing them into their subfunctions is already partly 
explained in literature (e.g., [19, 20, 21]). In the context of 
MBSE, for example, the SPES 2020 framework [19] explains 
the functional decomposition with the black-box / white-box 
model, where all functions of the functional white-box model 
have to show the same behavior as specified by the user 
function of the functional black-box model.  

To verify the conformity of the two models, a mapping of 
the individual inputs and outputs is required. As a rough 
indication regarding the amount of decomposition levels, 
SPES 2020 framework [19] only emphasizes that the chosen 
granularity depends on the choice and the skill of the 
developer. Here, Tang [22] provides an improved statement 
and couples the recursively refinement of lower-level 
technical functions identified from domain knowledge to the 
level where either the function specification is clear enough 
for allocation or realization without further decomposition or 
there are already identified products realizing it. 

Looking at Lamm’s and Weilkins’ [5] heuristic approach 
to obtain a functional structure, their approach aims to group 
activities of a functional tree so that all composed functional 
groups are as independent as possible showing a low external 
complexity even though there is a high internal complexity. 
For this purpose, Lamm and Weilkins state that a functional 
group takes the functions that are related to system actors and 
grouping criteria of existing products can serve as a reference 
for current development. Thus, functions that share data can 
be grouped just like functions originating from abstract and 
secondary use cases provided that function calls imply a 
cohesion regarding their linked sub-functions. 

Although these aforementioned approaches partly help to 
systematically elaborate a functional architecture, a real 
assistance with concrete guidelines to strategically define and 
decompose functions for both perspectives a greenfield (i.e., 
new innovation) and brownfield (i.e., product generation) 
development is still missing. Thus, this contribution aims to 
close this research gap and  

• defines guiding rules that facilitate the decomposition 
of system functions into subsystem functions 

• defines control criteria when a further functional 
decomposition is advisable 

• provides a consistency check for the definition and 
decomposition of functions towards the logical 
viewpoint of the system architecture (e.g., by an 
optional “custom mapping” between functional and 
logical interfaces) 

Demonstrating all these topics on a practical example to 
show a real-world applicability, the overall research question 
of “how should system functions be systematically defined 
and decomposed into its constituents to invariably link the 
logical architecture and thus unambiguously supports all 
further development steps in SE” will now be pursued in the 
following sections. 

 

III. SYSTEMATIC GUIDELINES OF FUNCTION DEFINITION AND 

DECOMPOSITION 

Based on the aforementioned deficits identified in the state 
of the art, the following section presents both a systematic 
procedure to define functions and generic guidelines focusing 
on specific decomposition strategies. Starting with the 
systematic procedure to define a function, the subsequent 
steps need to be successively carried out: 

1) Scope the function: 

Look at your system-of-interest as a black box being the 

context of the function and make sure that the system 

border is clearly defined. Set a task or capability of your 

system as the scope of the function that you want to define. 

(note: those can exemparily be identified as a specific step 

in individual use cases being previously modeled) 

2) Name the function: 

Name the function by its main nature formulated as a 

"verb + object". For verbs ideally use terms of a function 

classification system, such as the functional basis by [18]. 

3) Specify inputs, outputs and impacts: 

Find required inputs and generated outputs of the 

function that are externally visible. Define the inputs and 



outputs by the type of flow (material, energy, information) 

across the system border. If the function affects the 

(internal) state of the system (e.g., charging a battery 

increases the energy stored in the system), describe the 

impact or change textually (especially important if the 

function has no outputs at all). 

(note: states influence the behaviour of the system, but are 

not explicitly visible in the functional architecture and 

thus in functional chains of effects with flows (e.g. electric 

vehicles can only drive if there is sufficient stored energy 

in the system)) 

4) Validation check of the function: 

Check if the function provides an output at the system 

border (or affects the state of the system). If not, it 

indicates that the function may already be a subfunction 

and thus should better be integrated into another function 

of the system. However, there are cases, where such 

functions have to be defined as a system function (e.g., 

when a function detects the state of the system and 

forwards information about it to other system functions). 

Once several functions are defined according to the prior 
procedure, a systematic decomposition of the functions is 
necessitated to further proceed within the early phases of 
systems engineering. Here, it is important to point out right at 
the beginning that there is a strict relation between the 
functional and logical decomposition, and thus functions may 
only be allocated to logical elements on the same system level 
[19]. Against this background, the following four basic 
guidelines (each formulated as a question) emerge to initially 
support the identification of subfunctions, and thus the 
functional decomposition at baseline: 

1) Based on the determined inputs and outputs of the 

function, which subfunction is required to process the 

input and convert it into the resulting output? 

2) What requirements are already linked to the function and 

do these suggest or require a specific subfunction? 

3) Are there any subfunctions to be defined based on general 

product and engineering knowledge, experience or 

company-specific pattern? 

4) Can information from reference products (i.e., 

architectures of previous or similar generations) be 

considered and at least partly used for decomposing the 

actual system function? 

Taking into account these overarching guiding questions 
along with the general guidance to follow the “intended use” 
first (e.g., separate “spatial movement” first into “axial 
movement in x” and “axial movement in y” before further 
decomposing into “accelerating” and “braking” respectively) 
while listing as little as possible functions per hierarchy level 
(rule of thumb: 7 ± 2 elements per view [23]), however, a 
different procedure needs to be considered for a greenfield and 
brownfield development process, see Figure 2. While doing 
so, it should be supplementary noted that the systematic 
procedure for defining system functions can also be used to 
support the actual functional decomposition, predominantly 
for the systematic definition of subfunctions. Nevertheless, the 
precondition to proceed the guiding procedure is that the 
(super) function to be decomposed is already properly defined 
and the necessity for a further decomposition has been 
established. 

 

Fig. 2. Schematic guiding procedure for greenfield and brownfield scope 

Here, and compared to various procedures of existing 
MBSE frameworks (e.g., FAS or SPES) solely providing an 
introductory guidance for a greenfield environment without 
any architectural restrictions, the guiding procedure depicted 
in Fig. 2 facilitates varying phases depending on the first 
choice regarding the availability of a base architecture, for 
example, from previous product generations or through 
customer constraints or a system-of-systems development. In 
contrast to the unimpeded development of a logical 
architecture based on impartially identified and defined 
functions (phase C), the latter case of existing basic 
architectural precepts recommends to additionally set the 
scope of the subfunctions (phase A) before identifying and 
defining them (phase B). The main reason for this is the almost 
directly desired consistency between the functional and 
logical architecture with fewer retrospective iterations as well 
as cases without any need for a decomposition since existing 
logical elements can already completely and independently 
fulfill specific functions. To ensure this consistency between 
the functional and logical decomposition, the comparatively 
novel extension of complying given control criteria (phase D) 
enables to answer when a decomposition is correct (i.e., no 
contradictions to the logical view exist, for example, whether 
all parameters can be delivered via an interface) and 
sufficiently detailed (i.e., with a clear allocation of one 
function to only one logical element). 

As a result, the four-step procedure to define a function as 
well as the aforementioned guidelines to purposively 
decompose a function can both be assigned to phase B 
“identify subfunctions”, which are now practically applied to 
an extensive application example. 



IV. EXEMPLARY USE OF THE SYSTEMATIC PROCEDURE AND 

GUIDELINES 

To demonstrate the validity of the systematic procedure 
and guidelines, the theoretical descriptions are practically 
applied to the example of a medical device to prepare blood 
samples for testing, see Fig. 3. This application example 
modeled in SysML and the findings published in this paper 
are based on the work from the BMBF-funded research 
project CyberTech, in which 6 partners from industry and 
research are pursuing the goal of developing socio-technical 
and digitalized processes, methods and tools being used to 
master the complexity of future development processes for 
smart machines or services in a human-centered way. 

 

Fig. 3. CAD model and medical procedure to prepare blood samples 

Apart from the more specific objective of obtaining a 
Digital Master to ensure a future model-based certification 
process, and thus offering a certain traceability of the 
conformity to standards already at an early stage, the 
following boundary conditions must be observed for the 
EXMO device: 

• Strict relationship between functional and logical 
decomposition levels, whereas a specific function can 
only be allocated to one logical element on the same 
hierarchy level 

• Already found or given system functions on top system 
level by technological expert knowledge 

With that in mind, and starting with the function definition, 
first the system function(s) need to be methodologically 
defined. 

Beginning with step 1 and considering the EXMO system 
as a black box, the scope is only on functions of the whole 
system, and thus does not focus tasks or capabilities of its 
subsystem. Accordingly, the machine-controlled extraction of 
the amino acids from blood samples can be formulated as 
“extract amino acids” corresponding to the “verb+object” 
pattern (step 2). As an exception, here, this basic system 
function can also be described as a use case of a specific 
stakeholder (i.e., the laboratory staff), which means that 
system functions can also be identified by describing 
particular use cases of the system. The further elaboration of 
the use case can subsequently help to understand the purpose 

                                                           
1 DWP or Deepweel Plate is a standard medical container for storing 

samples or process agents 

of the system to be developed and to detect visible functional 
inputs and outputs (step 3). Based on the actions of the 
laboratory staff and the neighbor systems, the function to 
“extract amino acids” exhibits the inputs “electric current”, 
“control command signal”, “DWP 1  with washing agent”, 
“DWP with samples”, “empty DWP + tip plate” from which 
the “heat” and “amino acids” (which contain metal and 
washing agent particles) can be derived as output, see Fig. 4. 

 

Fig. 4. Systematic detection of inputs and outputs of the system function by 

a detailed description of the use case 

When checking the validity of the function in step 4, it can be 
seen that all of the inputs and outputs of the system function 
cross the EXMO system border (viz. swimlane), which 
indicates that it is indeed a function of the highest system level 
and not a subsystem function. 

After defining the basic system function, and furtherly 
decomposing the system architecture and specifying the more 
specific system functions in a first instance with the help of a 
more detailed use case scenario description as well as process-
specific or rather technological expert knowledge along with 
reference product insights (see Fig. 5), the previously 
proposed guidelines can be illustrated at various points to 
successively decompose these system functions. 

 

Fig. 5. Systematic definition of the main system functions of EXMO 

Starting with the system function “pick up tip plate” being 
allocated to the logical element of the “head system” on 
hierarchy level 1 (a tip plate is a single use medical add-on, 
usually made of plastic and used to mix samples), the 
systematic view to required subfunctions addressing the 
successive transformation of a functional input into its output 
(Guideline 1) leads to a further functional decomposition. 



Guideline 1 – functional inputs & outputs 

Question: “Which subfunctions are needed to process the input and 
transform it into its output?” 

 

 
 

Input 1: “tip plate” 

Input 2: “pick up movement control signal” 
 

Output 1: “tip plate on head” 

Output 2: “tip plate fixation status” 

 
Explanation/Description: 

Having a look to the first pair of input and output, there is a necessity to 

define at least two potential subfunctions to transform the inputs into 
outputs. Here, one subfunction represents the movement needed to place 

the head into the correct position for picking the tip plate. The other 

subfunction represents the need to attach the tip plate to the head.  
In the same way the potential subfunctions for the other pair can be 

defined. Here, the input regarding the control signal emerges a subfunction 

to control the movement and attachment, whereas the output requires a 
subfunction to send the fixation status to the device control. 

Based on these deductions not only the needed subfunctions of the system 

function are further on defined, but also the corresponding link is 
inherently stated. 

 

 
 

 

Having a look to the system function to “regulate 
temperature” being allocated to the “heating nest”, here the 
closer look to the attached requirements leads to a further 
functional decomposition. 

Guideline 2 – attached requirements 

Question: “Does any linked functional requirement suggest or require a 

specific subfunction?” 
 

 
Linked functional requirement: “heating duration” 

 
Explanation/Description: 

System or stakeholder requirements (directly or indirectly) linked to a 

specific function can provide further information about needed 

subfunctions. Here, the requirement “heating duration” and its description 
that “the duration of the active heating should be adjustable for each 

heating nest and each process step” already tells us that an active 

temperature measurement and control is necessary. Consequently, four 
subfunctions “control temperature”, “provide heat”, “measure 

temperature” and “release heat” are needed and thus can be defined. 

 

 
 

 
In some cases, also the existing knowledge of the 

engineers about the product (a similar one or a similar function 
in a different context) is sufficient to define the subfunctions. 
Thus, for the main function to “mix up the DWP probes” a 
predefined solution is already known leading to a restricted 
solution-neutral description in the further functional 
decomposition. 

Guideline 3 – general product and engineering knowledge 

Question: “Are there any subfunctions to be defined based on general 

product and engineering knowledge, experience or company-specific 

pattern?” 
 

 

 
Explanation/Description: 

Engineers often doubt the sufficiency of “just” using their expertise, even 

it can be really useful to specifically decompose the system architecture. 
In the case to “mix up the DWP probes”, the engineers recognized that the 

needed translational movement is most conveniently realized by an 

electric motor for such a type of system, so that at this point a solution-
specific function can be defined. Additionally, the engineers know that the 

most convenient type of electric motors is using a rotatory working 

principle. In consequence, for the translational movement a function for 
transforming the rotational force into a linear force is required. As a result, 

this leads to a respective definition of a subfunction since it can be relevant 

on system level. 
 

 

 

For the system model of the EXMO device, there was an 
older functional architecture from a previous generation as 
basic input. This model was not clearly decomposed in system 
layers, but it still allowed to extract some subfunctions as 
shown below. 

Guideline 4 – information from reference products 

Question: “Can information from reference products (i.e., architectures of 

previous or similar generations) be at least partly used for decomposing 
the actual system function?” 



 
Carry-over function 1: ”move tip plate with magnets and magnetic 
particles to mid position” 

Carry-over function 2: “resuspend magnetic particles without magnets” 

 
Explanation/Description: 

As described above, the carry-over of subfunctions and mapping them to 

a function reduces the effort for functional decomposition. In case of a 

given EXMO reference system, a base functional architecture was already 
available when the modelling of the demonstrator started. Thus, some 

functions (e.g., “pick up tip plate”) were directly reused in the new 

functional architecture without any need for changes. Other functions 
(e.g., “move tip plate with magnets and magnetic particles to mid position” 

or “resuspend magnetic particles without magnets”) were identified as 

subfunctions of a function (e.g., “wash amino acids + magnetic particles”) 
from an upper system level and only get partly split into more separated 

functions covering the desired atomic character when allocating to specific 

logical elements. Consequently, the elaboration of the functional 
architecture based on a reference system eases the definition and 

decomposition process by having a proven template with a view of its 

scope as concrete provider of ideas. 
 

 
 

 
 

 

However, there are also some exceptions for 
decomposition, i.e. for some functions the next decomposition 
layer does not necessarily coincide with the next system layer. 
This can occur when a system layer L(n+1) is needed by some 
functions but not by others. In this case, the function from 
system layer L(n) can be repeatedly allocated to another 
logical element from system layer L(n+1) without 
decomposing it, and thus the function will be explicitly 
allocated to two logical elements. Since these two logical 
elements belong to two different system levels and are 
themselves in a decomposition relation, this multiple 
allocation does not contradict the previously defined boundary 
conditions.  

For the EXMO demonstrator a similar case could exists 
for the “control movement” function. If the system element 
“control unit” is first logically decomposed into different 
subsystems or rather modules on system level 3 (e.g., “control 
module 1” and “control module 2”) before specifying the 
logical subcomponents of the controllers, then the “control 
movement” function can be meaningfully decomposed only 
when specifying the functions of the particular controller, 
which is the case on system level 5 (see Fig. 6). Thus, the 
“control movement” function on system level 4 is allocated to 
the “movement controller” without any changes. 

 

Fig. 6. Visualization of an exemplarily exception for decomposition 

With that in mind, and answering the always arising 
question “when is the functional decomposition finished?”, the 
system and its functions can be decomposed until one of the 
following cases occur: 

• For a given function, a logical element is found that 
can be already mapped to a specific engineering 
domain with concrete detailed design ideas, and thus 
the system element does not need to be furtherly 
decomposed 

• A logical element is found that represents a subsystem 
whose functional decomposition is not relevant for the 
current system, but can be further modelled and 
decomposed in a separate model along with its 
subfunctions (note: considering SoS mindset) 

Again, using the example of the EXMO demonstrator, for 
example the function “rotate z-axis motor” to support the tip 
plate is allocated to the logical element “motor z-axis”, where 
a further functional decomposition is not directly relevant for 
the entire EXMO system, but only for the independent 
development of the subsystem “motor z-axis”. Thus, the 
decomposition of the “motor z-axis” is only required if it 
cannot be mapped to a single engineering domain (e.g., the 
“motor” is still a mechatronic system) or it is not purchased, 
but developed in-house, so that a separate modeling in an own 
model becomes necessary. 

V. CONCLUSION 

Having evaluated the actual state of the art and stated the 
derived needs for a revised approach to systematically 
elaborate a functional architecture, this contribution first 
presents a general procedure with concrete guidelines to 
strategically define and decompose functions for both 
perspectives a greenfield and brownfield environment. By 
providing real assistance with defined guiding rules and 
control criteria, thus the mapping between functional and 



logical interfaces can be tackled much more efficiently, which 
is partly shown on a practical example. 

VI. DISCUSSION AND OUTLOOK 

With a specific view to project or company-specific topics, 
however, there are often some further restrictions or 
boundaries and their influence on the regular functional 
decomposition apart from the pure distinction between a 
complete new development (without any preparatory logical 
architecture) and adapted constructions (with an existing 
logical base architecture), such as make-or-buy decisions, 
product line engineering & reusability, predefined standard 
functions for internal collaborations with different company 
divisions as well as a technical vs. organizational or divisional 
relatedness. 

Starting with the aspects of make-or-buy decisions, the 
system model and its functional decomposition is immediately 
affected depending on the decision of buying or developing 
subsystems. In the case of finding a logical element that can 
be mapped directly to a purchased technical component, only 
the top-level functions for this logical element are needed to 
be elaborated. The decomposition of the top-level functions is 
not required. However, if the company decides to develop a 
subsystem rather than purchasing it, then the further definition 
and decomposition of the functions are necessitated. 

How functions are defined, decomposed and grouped by 
allocating them to logical elements may also depend on the 
nature of the product. If it is a one-off product or a product 
with few variants (e.g., specialized manufacturing 
equipment), then the reusability of the system functions and 
architecture plays a minor role. For each such system, here, 
new functions are required and a new system architecture 
needs to be created where the previously defined functions and 
their decomposition can be used only as a reference. However, 
if the system is to be part of a product line or many variants 
exist, then the direct reusability of common parts and thus of 
functions and parts of the system architecture is desirable. 

Taking up this last aspect again from another perspective, 
standard functions may also be predefined at the highest level 
when collaborating with different company divisions. This 
could be a thought for an early design freeze with defined 
high-level functions before starting with a further functional 
decomposition of products whose core functionality just 
barely changes from generation to generation. Thanks to this 
predefinition, a clear functional scope for the product is 
available for all collaborating divisions right at the beginning 
of the modelling of the functional architecture, so that lengthy 
analyses of the high-level functional cut are not necessary 
anymore. 

Looking to the aforementioned aspect of a respective 
relatedness, the functional decomposition and its allocation to 
logical elements can be further influenced not only by 
technical factors, but also by the company structure. For 
example, selected electronic functions can be deliberately 
allocated to one logical element in order to simplify the 
complex processes of developing electronic components by 
giving the responsibility for a further elaboration to a 
dedicated group of experts (e.g., for sensor technologies). 

Moreover, and with a further regard to collaborations with 
different company divisions, internal engineering processes 
and standard practices can also affect the previously described 
functional decomposition, where system architects may prefer 

to divide functions according to their affiliation to a technical 
domain, since this can facilitate the subsequent product 
development within the technical domains. Illustrating this 
issue on the example of the EXMO function “control 
temperature” (see Fig. 7), in the current functional 
decomposition this function belongs to “regulate 
temperature”, since it is required to regulate the heating and 
cooling cycles of the “heating nest” (see Fig. 5). This type of 
decomposition can be described as “mechatronic 
decomposition”, since subfunctions are not separated 
according to engineering domains to which they belong. 

 

Fig. 7. Functional allocation of the subfunction “control temperature” 

In contrast, another strategy would be to decompose the 
functions according to their respective technical domains or at 
least to focus more on these. Thus, the subfunction “control 
temperature” can still be allocated to the logical element 
“temperature controller”, albeit this is now part of the system 
“control unit” and no longer has a composition relationship to 
the “heating nest”. Since the logical system “control unit” is 
part of one engineering domain (namely electronics), it can 
now be used as subfunction in the function “control extraction 
(internal)”, as comparatively depicted in Fig. 8. Here, the 
information input needed for “regulate temperature” to control 
heating and cooling cycles would be provided by an object 
flow from “control extraction (internal)” (see Fig. 5).  

 

Fig. 8. Illustration of both collaboration-driven decomposition strategies: 

a) mechatronic decomposition, b) domain-oriented decomposition 

In the end, the advantages and disadvantages of both 
decomposition strategies need to be evaluated by the 

a)

b)



company’s experts and how they would like to handle it 
further on. Notwithstanding this, this topic should be further 
analyzed based on further examples in order to gain a better 
understanding of the individual benefits and finally to derive 
further consultancy advices. 

Given the fact that all these advanced topics need a further 
consideration also in association with the consequent 
application of an adaptable zigzagging procedure between 
requirements, functions and at least logical elements, the 
subsequently commenced research activities focus on the 
further integration of company- specific or rather case-specific 
circumstances into the previously introduced guidance to 
systematically define and decompose a functional 
architecture. Here, a human-centered modeling advisor 
accessing the current state of the model and all its stored data 
and project-specific knowledge is envisaged as an 
accompanied add-on directly within the operating systems 
modeling tool. 
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