
Guidelines for systematic functional decomposition

in model-based systems engineering

Jerome Kaspar

Model-Based Engineering Department

:em engineering methods AG

Darmstadt, Germany

jerome.kaspar@em.ag

Christian Zingel

Model-Based Engineering Department

:em engineering methods AG

Darmstadt, Germany

christian.zingel@em.ag

Nicolae Cioroi

Model-Based Engineering Department

:em engineering methods AG

Darmstadt, Germany

nicolae.cioroi@em.ag

Sven Kleiner

Model-Based Engineering Department

:em engineering methods AG

Darmstadt, Germany

sven.kleiner@em.ag

Martin Bauch

Model-Based Engineering Department

:em engineering methods AG

Darmstadt, Germany

martin.bauch@em.ag

Abstract—The increasing complexity in today’s products

require an ever more systematic product development process

in which the use of model-based systems engineering (MBSE)

plays an increasingly decisive role, especially against the

background of cross-disciplinary collaboration. Having

evaluated the actual state of the art, many companies still have

true difficulties when modeling the functional architecture with

the help of actual approaches. Thus, a new procedure with

concrete guiding rules and control criteria to strategically define

and decompose functions for the two perspectives a greenfield

and brownfield environment is theoretically introduced and

partly applied to a practical example.

Keywords—model-based systems engineering, functional

architecture, functional decomposition, systems engineering,

guideline

I. INTRODUCTION AND MOTIVATION

Today, the networking of the physical world of machines,
plants and devices with the virtual world of the internet (so-
called cyberspace) is progressing ever faster [1]. Thus,
modern advanced systems are more and more equipped with
sensors and electronics, for example, to allow statements on
predictive maintenance to improve operating times. Apart
from the steadily increase of requirements on products,
systems and processes (e.g., by customer expectations, legal
restraints and corporate objectives) as well as the growing
globalization and micro-segmentation of markets with its
competitive complexity of the entire value chain of
companies, the development of cyber-physical systems faces
notable and hitherto unknown challenges. As a result, model-
based systems engineering (MBSE) is becoming more and
more established to satisfactorily manage complexity,
facilitate scalability, assure traceability and maintain
consistency during the early phase of system development.

Despite the numerous approaches regarding a systematic
application of MBSE (e.g., OOSEM [2, 3], SYSMOD [4],
FAS [5]) [6] and related concepts elaborating a functional
reference architecture (e.g., via functional chain analysis [7, 8,
9]), the functional architecture – as an essential view of the
system architecture [10] – has not yet been illuminated to the
extent that a truly focused guide is available to define and
decompose functions. Moreover, the approaches assume that
either a pure new design in form of a greenfield approach is
present or that reverse engineering is the focus, and thus
mainly neglecting to address the most commonly used mixture
of both, i.e. a given base architecture [11] within the

philosophy of a product generation engineering [12]. So, when
modeling the functional architecture of complex systems,
many companies have true difficulties [13] especially in
conducting a systematic functional decomposition while
generally asking:

• How many subfunctions should a function be divided
into? When is it too much? And up to which level is it
needed at all?

• How to "cut" functions in general and which
information can be used to do so? Is there a difference
for greenfield or brownfield projects?

• To which system level does a particular function
belong? And to which logical elements should the
functions be allocated?

Accordingly, and mainly focusing on the second question,
this contribution targets the general establishment of a
guidance document leading to a stepwise elaboration of a
functional architecture depending on possible conditions and
specifications in the respective context. After presenting the
actual state of the art (section 2) and introducing the basic
procedure with systematic guidelines for the functional
definition and decomposition (section 3), section 4 applies
selected rules and advices in various parts of the introduced
validation example. By giving a discussion and outlook in the
end (section 5), the presented approach is critically being
reviewed and further boundary aspects are listed that could
slightly lead to an adjusted procedure of decomposing the
functional architecture.

II. STATE OF THE ART – FUNCTIONAL ARCHITECTURE IN

MBSE

Starting with the fundamentals of product design, almost
all systematic development processes follow the four-stage
procedure of task clarification, conceptual design,
embodiment design and detail design [14]. Here, and given the
fact that the notion of function is central to design but can be
interpreted in multiple ways [15], the systematic modeling of
the functional architecture can be assigned to the conceptual
design and provides a functional understanding of a system
without showing how the system is able to do this and
reflecting the current functional state or its behavior being
currently active. Thus, the functional architecture can be
defined as the entity of functions of a system and its structured
breakdown including described relationships/interactions

between functions. In addition, the functional architecture can
also have a static and dynamic representation, where the first
represents the functions and their interactions without
information about the conditions and timing, and the second
also represents the time sequence in which the functions are
executed with a possible link to the behavioral model.

Divided into individual system functions identified from
use cases and their scenarios, each system function is initially
defined from a black-box perspective on the system, and thus
states an abstract description of what the system shall do (i.e.
defines a solution-neutral description of the relationship
between input, output and state variables of a system with the
objective of fulfilling a task [16]) before more concrete
functions can be described in various, subdivided
decomposition levels deepening the understanding of the
system. Notwithstanding the pursued advocation of an as long
as possible maintained solution neutrality [14], the
hierarchical decomposition of the system functions into
functions of subsystems and components is in practice often
done in association with the elaboration of logical elements
since subfunctions at least partly depend on taken embodiment
decisions. As a result, and as already partly indicated above,
the generation of a functional architecture consists of both a
specific definition of a function and a decomposition strategy.

To do so, and compared to the preceding identification
process to generally find and indicate capabilities or tasks of a
system, different approaches define specific conventions to
systematically name a function by using a “verb +
object/flow”. Starting with the more elementary and strictly
scheme by Pahl/Beitz [14] or Hundal [17], Hirtz et al. [18]
recommend a broader and nowadays well-known functional
basis representation for functions and flows, see Fig. 1.

Class Basic Class Basic Class Basic

Branch
Separate

Control
Magnitude

Actuate

Signal

Sense

Distribute Regulate Indicate

Channel

Import Change Process

Export Stop

Support

Stabilize

Transfer Convert Convert Secure

Guide
Provision

Store Position

Connect
Couple Supply

Mix

Fig. 1. Excerpt from the classification of functions by Hirtz et al. [18]

Having understood this systematic definition process, the
basic idea of defining top level system functions and then
decomposing them into their subfunctions is already partly
explained in literature (e.g., [19, 20, 21]). In the context of
MBSE, for example, the SPES 2020 framework [19] explains
the functional decomposition with the black-box / white-box
model, where all functions of the functional white-box model
have to show the same behavior as specified by the user
function of the functional black-box model.

To verify the conformity of the two models, a mapping of
the individual inputs and outputs is required. As a rough
indication regarding the amount of decomposition levels,
SPES 2020 framework [19] only emphasizes that the chosen
granularity depends on the choice and the skill of the
developer. Here, Tang [22] provides an improved statement
and couples the recursively refinement of lower-level
technical functions identified from domain knowledge to the
level where either the function specification is clear enough
for allocation or realization without further decomposition or
there are already identified products realizing it.

Looking at Lamm’s and Weilkins’ [5] heuristic approach
to obtain a functional structure, their approach aims to group
activities of a functional tree so that all composed functional
groups are as independent as possible showing a low external
complexity even though there is a high internal complexity.
For this purpose, Lamm and Weilkins state that a functional
group takes the functions that are related to system actors and
grouping criteria of existing products can serve as a reference
for current development. Thus, functions that share data can
be grouped just like functions originating from abstract and
secondary use cases provided that function calls imply a
cohesion regarding their linked sub-functions.

Although these aforementioned approaches partly help to
systematically elaborate a functional architecture, a real
assistance with concrete guidelines to strategically define and
decompose functions for both perspectives a greenfield (i.e.,
new innovation) and brownfield (i.e., product generation)
development is still missing. Thus, this contribution aims to
close this research gap and

• defines guiding rules that facilitate the decomposition
of system functions into subsystem functions

• defines control criteria when a further functional
decomposition is advisable

• provides a consistency check for the definition and
decomposition of functions towards the logical
viewpoint of the system architecture (e.g., by an
optional “custom mapping” between functional and
logical interfaces)

Demonstrating all these topics on a practical example to
show a real-world applicability, the overall research question
of “how should system functions be systematically defined
and decomposed into its constituents to invariably link the
logical architecture and thus unambiguously supports all
further development steps in SE” will now be pursued in the
following sections.

III. SYSTEMATIC GUIDELINES OF FUNCTION DEFINITION AND

DECOMPOSITION

Based on the aforementioned deficits identified in the state
of the art, the following section presents both a systematic
procedure to define functions and generic guidelines focusing
on specific decomposition strategies. Starting with the
systematic procedure to define a function, the subsequent
steps need to be successively carried out:

1) Scope the function:

Look at your system-of-interest as a black box being the

context of the function and make sure that the system

border is clearly defined. Set a task or capability of your

system as the scope of the function that you want to define.

(note: those can exemparily be identified as a specific step

in individual use cases being previously modeled)

2) Name the function:

Name the function by its main nature formulated as a

"verb + object". For verbs ideally use terms of a function

classification system, such as the functional basis by [18].

3) Specify inputs, outputs and impacts:

Find required inputs and generated outputs of the

function that are externally visible. Define the inputs and

outputs by the type of flow (material, energy, information)

across the system border. If the function affects the

(internal) state of the system (e.g., charging a battery

increases the energy stored in the system), describe the

impact or change textually (especially important if the

function has no outputs at all).

(note: states influence the behaviour of the system, but are

not explicitly visible in the functional architecture and

thus in functional chains of effects with flows (e.g. electric

vehicles can only drive if there is sufficient stored energy

in the system))

4) Validation check of the function:

Check if the function provides an output at the system

border (or affects the state of the system). If not, it

indicates that the function may already be a subfunction

and thus should better be integrated into another function

of the system. However, there are cases, where such

functions have to be defined as a system function (e.g.,

when a function detects the state of the system and

forwards information about it to other system functions).

Once several functions are defined according to the prior
procedure, a systematic decomposition of the functions is
necessitated to further proceed within the early phases of
systems engineering. Here, it is important to point out right at
the beginning that there is a strict relation between the
functional and logical decomposition, and thus functions may
only be allocated to logical elements on the same system level
[19]. Against this background, the following four basic
guidelines (each formulated as a question) emerge to initially
support the identification of subfunctions, and thus the
functional decomposition at baseline:

1) Based on the determined inputs and outputs of the

function, which subfunction is required to process the

input and convert it into the resulting output?

2) What requirements are already linked to the function and

do these suggest or require a specific subfunction?

3) Are there any subfunctions to be defined based on general

product and engineering knowledge, experience or

company-specific pattern?

4) Can information from reference products (i.e.,

architectures of previous or similar generations) be

considered and at least partly used for decomposing the

actual system function?

Taking into account these overarching guiding questions
along with the general guidance to follow the “intended use”
first (e.g., separate “spatial movement” first into “axial
movement in x” and “axial movement in y” before further
decomposing into “accelerating” and “braking” respectively)
while listing as little as possible functions per hierarchy level
(rule of thumb: 7 ± 2 elements per view [23]), however, a
different procedure needs to be considered for a greenfield and
brownfield development process, see Figure 2. While doing
so, it should be supplementary noted that the systematic
procedure for defining system functions can also be used to
support the actual functional decomposition, predominantly
for the systematic definition of subfunctions. Nevertheless, the
precondition to proceed the guiding procedure is that the
(super) function to be decomposed is already properly defined
and the necessity for a further decomposition has been
established.

Fig. 2. Schematic guiding procedure for greenfield and brownfield scope

Here, and compared to various procedures of existing
MBSE frameworks (e.g., FAS or SPES) solely providing an
introductory guidance for a greenfield environment without
any architectural restrictions, the guiding procedure depicted
in Fig. 2 facilitates varying phases depending on the first
choice regarding the availability of a base architecture, for
example, from previous product generations or through
customer constraints or a system-of-systems development. In
contrast to the unimpeded development of a logical
architecture based on impartially identified and defined
functions (phase C), the latter case of existing basic
architectural precepts recommends to additionally set the
scope of the subfunctions (phase A) before identifying and
defining them (phase B). The main reason for this is the almost
directly desired consistency between the functional and
logical architecture with fewer retrospective iterations as well
as cases without any need for a decomposition since existing
logical elements can already completely and independently
fulfill specific functions. To ensure this consistency between
the functional and logical decomposition, the comparatively
novel extension of complying given control criteria (phase D)
enables to answer when a decomposition is correct (i.e., no
contradictions to the logical view exist, for example, whether
all parameters can be delivered via an interface) and
sufficiently detailed (i.e., with a clear allocation of one
function to only one logical element).

As a result, the four-step procedure to define a function as
well as the aforementioned guidelines to purposively
decompose a function can both be assigned to phase B
“identify subfunctions”, which are now practically applied to
an extensive application example.

IV. EXEMPLARY USE OF THE SYSTEMATIC PROCEDURE AND

GUIDELINES

To demonstrate the validity of the systematic procedure
and guidelines, the theoretical descriptions are practically
applied to the example of a medical device to prepare blood
samples for testing, see Fig. 3. This application example
modeled in SysML and the findings published in this paper
are based on the work from the BMBF-funded research
project CyberTech, in which 6 partners from industry and
research are pursuing the goal of developing socio-technical
and digitalized processes, methods and tools being used to
master the complexity of future development processes for
smart machines or services in a human-centered way.

Fig. 3. CAD model and medical procedure to prepare blood samples

Apart from the more specific objective of obtaining a
Digital Master to ensure a future model-based certification
process, and thus offering a certain traceability of the
conformity to standards already at an early stage, the
following boundary conditions must be observed for the
EXMO device:

• Strict relationship between functional and logical
decomposition levels, whereas a specific function can
only be allocated to one logical element on the same
hierarchy level

• Already found or given system functions on top system
level by technological expert knowledge

With that in mind, and starting with the function definition,
first the system function(s) need to be methodologically
defined.

Beginning with step 1 and considering the EXMO system
as a black box, the scope is only on functions of the whole
system, and thus does not focus tasks or capabilities of its
subsystem. Accordingly, the machine-controlled extraction of
the amino acids from blood samples can be formulated as
“extract amino acids” corresponding to the “verb+object”
pattern (step 2). As an exception, here, this basic system
function can also be described as a use case of a specific
stakeholder (i.e., the laboratory staff), which means that
system functions can also be identified by describing
particular use cases of the system. The further elaboration of
the use case can subsequently help to understand the purpose

1 DWP or Deepweel Plate is a standard medical container for storing

samples or process agents

of the system to be developed and to detect visible functional
inputs and outputs (step 3). Based on the actions of the
laboratory staff and the neighbor systems, the function to
“extract amino acids” exhibits the inputs “electric current”,
“control command signal”, “DWP 1 with washing agent”,
“DWP with samples”, “empty DWP + tip plate” from which
the “heat” and “amino acids” (which contain metal and
washing agent particles) can be derived as output, see Fig. 4.

Fig. 4. Systematic detection of inputs and outputs of the system function by

a detailed description of the use case

When checking the validity of the function in step 4, it can be
seen that all of the inputs and outputs of the system function
cross the EXMO system border (viz. swimlane), which
indicates that it is indeed a function of the highest system level
and not a subsystem function.

After defining the basic system function, and furtherly
decomposing the system architecture and specifying the more
specific system functions in a first instance with the help of a
more detailed use case scenario description as well as process-
specific or rather technological expert knowledge along with
reference product insights (see Fig. 5), the previously
proposed guidelines can be illustrated at various points to
successively decompose these system functions.

Fig. 5. Systematic definition of the main system functions of EXMO

Starting with the system function “pick up tip plate” being
allocated to the logical element of the “head system” on
hierarchy level 1 (a tip plate is a single use medical add-on,
usually made of plastic and used to mix samples), the
systematic view to required subfunctions addressing the
successive transformation of a functional input into its output
(Guideline 1) leads to a further functional decomposition.

Guideline 1 – functional inputs & outputs

Question: “Which subfunctions are needed to process the input and
transform it into its output?”

Input 1: “tip plate”

Input 2: “pick up movement control signal”

Output 1: “tip plate on head”

Output 2: “tip plate fixation status”

Explanation/Description:

Having a look to the first pair of input and output, there is a necessity to

define at least two potential subfunctions to transform the inputs into
outputs. Here, one subfunction represents the movement needed to place

the head into the correct position for picking the tip plate. The other

subfunction represents the need to attach the tip plate to the head.
In the same way the potential subfunctions for the other pair can be

defined. Here, the input regarding the control signal emerges a subfunction

to control the movement and attachment, whereas the output requires a
subfunction to send the fixation status to the device control.

Based on these deductions not only the needed subfunctions of the system

function are further on defined, but also the corresponding link is
inherently stated.

Having a look to the system function to “regulate
temperature” being allocated to the “heating nest”, here the
closer look to the attached requirements leads to a further
functional decomposition.

Guideline 2 – attached requirements

Question: “Does any linked functional requirement suggest or require a

specific subfunction?”

Linked functional requirement: “heating duration”

Explanation/Description:

System or stakeholder requirements (directly or indirectly) linked to a

specific function can provide further information about needed

subfunctions. Here, the requirement “heating duration” and its description
that “the duration of the active heating should be adjustable for each

heating nest and each process step” already tells us that an active

temperature measurement and control is necessary. Consequently, four
subfunctions “control temperature”, “provide heat”, “measure

temperature” and “release heat” are needed and thus can be defined.

In some cases, also the existing knowledge of the

engineers about the product (a similar one or a similar function
in a different context) is sufficient to define the subfunctions.
Thus, for the main function to “mix up the DWP probes” a
predefined solution is already known leading to a restricted
solution-neutral description in the further functional
decomposition.

Guideline 3 – general product and engineering knowledge

Question: “Are there any subfunctions to be defined based on general

product and engineering knowledge, experience or company-specific

pattern?”

Explanation/Description:

Engineers often doubt the sufficiency of “just” using their expertise, even

it can be really useful to specifically decompose the system architecture.
In the case to “mix up the DWP probes”, the engineers recognized that the

needed translational movement is most conveniently realized by an

electric motor for such a type of system, so that at this point a solution-
specific function can be defined. Additionally, the engineers know that the

most convenient type of electric motors is using a rotatory working

principle. In consequence, for the translational movement a function for
transforming the rotational force into a linear force is required. As a result,

this leads to a respective definition of a subfunction since it can be relevant

on system level.

For the system model of the EXMO device, there was an
older functional architecture from a previous generation as
basic input. This model was not clearly decomposed in system
layers, but it still allowed to extract some subfunctions as
shown below.

Guideline 4 – information from reference products

Question: “Can information from reference products (i.e., architectures of

previous or similar generations) be at least partly used for decomposing
the actual system function?”

Carry-over function 1: ”move tip plate with magnets and magnetic
particles to mid position”

Carry-over function 2: “resuspend magnetic particles without magnets”

Explanation/Description:

As described above, the carry-over of subfunctions and mapping them to

a function reduces the effort for functional decomposition. In case of a

given EXMO reference system, a base functional architecture was already
available when the modelling of the demonstrator started. Thus, some

functions (e.g., “pick up tip plate”) were directly reused in the new

functional architecture without any need for changes. Other functions
(e.g., “move tip plate with magnets and magnetic particles to mid position”

or “resuspend magnetic particles without magnets”) were identified as

subfunctions of a function (e.g., “wash amino acids + magnetic particles”)
from an upper system level and only get partly split into more separated

functions covering the desired atomic character when allocating to specific

logical elements. Consequently, the elaboration of the functional
architecture based on a reference system eases the definition and

decomposition process by having a proven template with a view of its

scope as concrete provider of ideas.

However, there are also some exceptions for
decomposition, i.e. for some functions the next decomposition
layer does not necessarily coincide with the next system layer.
This can occur when a system layer L(n+1) is needed by some
functions but not by others. In this case, the function from
system layer L(n) can be repeatedly allocated to another
logical element from system layer L(n+1) without
decomposing it, and thus the function will be explicitly
allocated to two logical elements. Since these two logical
elements belong to two different system levels and are
themselves in a decomposition relation, this multiple
allocation does not contradict the previously defined boundary
conditions.

For the EXMO demonstrator a similar case could exists
for the “control movement” function. If the system element
“control unit” is first logically decomposed into different
subsystems or rather modules on system level 3 (e.g., “control
module 1” and “control module 2”) before specifying the
logical subcomponents of the controllers, then the “control
movement” function can be meaningfully decomposed only
when specifying the functions of the particular controller,
which is the case on system level 5 (see Fig. 6). Thus, the
“control movement” function on system level 4 is allocated to
the “movement controller” without any changes.

Fig. 6. Visualization of an exemplarily exception for decomposition

With that in mind, and answering the always arising
question “when is the functional decomposition finished?”, the
system and its functions can be decomposed until one of the
following cases occur:

• For a given function, a logical element is found that
can be already mapped to a specific engineering
domain with concrete detailed design ideas, and thus
the system element does not need to be furtherly
decomposed

• A logical element is found that represents a subsystem
whose functional decomposition is not relevant for the
current system, but can be further modelled and
decomposed in a separate model along with its
subfunctions (note: considering SoS mindset)

Again, using the example of the EXMO demonstrator, for
example the function “rotate z-axis motor” to support the tip
plate is allocated to the logical element “motor z-axis”, where
a further functional decomposition is not directly relevant for
the entire EXMO system, but only for the independent
development of the subsystem “motor z-axis”. Thus, the
decomposition of the “motor z-axis” is only required if it
cannot be mapped to a single engineering domain (e.g., the
“motor” is still a mechatronic system) or it is not purchased,
but developed in-house, so that a separate modeling in an own
model becomes necessary.

V. CONCLUSION

Having evaluated the actual state of the art and stated the
derived needs for a revised approach to systematically
elaborate a functional architecture, this contribution first
presents a general procedure with concrete guidelines to
strategically define and decompose functions for both
perspectives a greenfield and brownfield environment. By
providing real assistance with defined guiding rules and
control criteria, thus the mapping between functional and

logical interfaces can be tackled much more efficiently, which
is partly shown on a practical example.

VI. DISCUSSION AND OUTLOOK

With a specific view to project or company-specific topics,
however, there are often some further restrictions or
boundaries and their influence on the regular functional
decomposition apart from the pure distinction between a
complete new development (without any preparatory logical
architecture) and adapted constructions (with an existing
logical base architecture), such as make-or-buy decisions,
product line engineering & reusability, predefined standard
functions for internal collaborations with different company
divisions as well as a technical vs. organizational or divisional
relatedness.

Starting with the aspects of make-or-buy decisions, the
system model and its functional decomposition is immediately
affected depending on the decision of buying or developing
subsystems. In the case of finding a logical element that can
be mapped directly to a purchased technical component, only
the top-level functions for this logical element are needed to
be elaborated. The decomposition of the top-level functions is
not required. However, if the company decides to develop a
subsystem rather than purchasing it, then the further definition
and decomposition of the functions are necessitated.

How functions are defined, decomposed and grouped by
allocating them to logical elements may also depend on the
nature of the product. If it is a one-off product or a product
with few variants (e.g., specialized manufacturing
equipment), then the reusability of the system functions and
architecture plays a minor role. For each such system, here,
new functions are required and a new system architecture
needs to be created where the previously defined functions and
their decomposition can be used only as a reference. However,
if the system is to be part of a product line or many variants
exist, then the direct reusability of common parts and thus of
functions and parts of the system architecture is desirable.

Taking up this last aspect again from another perspective,
standard functions may also be predefined at the highest level
when collaborating with different company divisions. This
could be a thought for an early design freeze with defined
high-level functions before starting with a further functional
decomposition of products whose core functionality just
barely changes from generation to generation. Thanks to this
predefinition, a clear functional scope for the product is
available for all collaborating divisions right at the beginning
of the modelling of the functional architecture, so that lengthy
analyses of the high-level functional cut are not necessary
anymore.

Looking to the aforementioned aspect of a respective
relatedness, the functional decomposition and its allocation to
logical elements can be further influenced not only by
technical factors, but also by the company structure. For
example, selected electronic functions can be deliberately
allocated to one logical element in order to simplify the
complex processes of developing electronic components by
giving the responsibility for a further elaboration to a
dedicated group of experts (e.g., for sensor technologies).

Moreover, and with a further regard to collaborations with
different company divisions, internal engineering processes
and standard practices can also affect the previously described
functional decomposition, where system architects may prefer

to divide functions according to their affiliation to a technical
domain, since this can facilitate the subsequent product
development within the technical domains. Illustrating this
issue on the example of the EXMO function “control
temperature” (see Fig. 7), in the current functional
decomposition this function belongs to “regulate
temperature”, since it is required to regulate the heating and
cooling cycles of the “heating nest” (see Fig. 5). This type of
decomposition can be described as “mechatronic
decomposition”, since subfunctions are not separated
according to engineering domains to which they belong.

Fig. 7. Functional allocation of the subfunction “control temperature”

In contrast, another strategy would be to decompose the
functions according to their respective technical domains or at
least to focus more on these. Thus, the subfunction “control
temperature” can still be allocated to the logical element
“temperature controller”, albeit this is now part of the system
“control unit” and no longer has a composition relationship to
the “heating nest”. Since the logical system “control unit” is
part of one engineering domain (namely electronics), it can
now be used as subfunction in the function “control extraction
(internal)”, as comparatively depicted in Fig. 8. Here, the
information input needed for “regulate temperature” to control
heating and cooling cycles would be provided by an object
flow from “control extraction (internal)” (see Fig. 5).

Fig. 8. Illustration of both collaboration-driven decomposition strategies:

a) mechatronic decomposition, b) domain-oriented decomposition

In the end, the advantages and disadvantages of both
decomposition strategies need to be evaluated by the

a)

b)

company’s experts and how they would like to handle it
further on. Notwithstanding this, this topic should be further
analyzed based on further examples in order to gain a better
understanding of the individual benefits and finally to derive
further consultancy advices.

Given the fact that all these advanced topics need a further
consideration also in association with the consequent
application of an adaptable zigzagging procedure between
requirements, functions and at least logical elements, the
subsequently commenced research activities focus on the
further integration of company- specific or rather case-specific
circumstances into the previously introduced guidance to
systematically define and decompose a functional
architecture. Here, a human-centered modeling advisor
accessing the current state of the model and all its stored data
and project-specific knowledge is envisaged as an
accompanied add-on directly within the operating systems
modeling tool.

ACKNOWLEDGMENT

The presented article is part of the research project
“CyberTech - Advanced Systems Engineering for the Design
of Cyber-Technical Systems”. This research and development
project is funded by the German Federal Ministry of
Education and Research (BMBF) within the “Innovations for
Tomorrow’s Production, Services, and Work” program
(funding number 02J19B010) and implemented by the Project
Management Agency Karlsruhe (PTKA). The authors are
responsible for the content of this publication.

REFERENCES

[1] M. E. Porter, J. E. Heppelmann, “How smart, connected products are
transforming competition,” Harvard business review, vol. 92, pp. 64–
88, 2014.

[2] S. Friedenthal, “Object Oriented Systems Engineering,” Process
Integration for 2000 and Beyond: Systems Engineering and Software
Symposium. New Orleans, Lockheed Martin Corporation, 1998.

[3] A. Friedenthal, A. Moore, R. Steiner, A practical guide to SysML: The
systems modeling language. Amsterdam: Elsevier, 2008.

[4] T. Weilkiens, Systems Engineering with SysML/UML: Modeling,
analysis, design. Amsterdam: Elsevier, 2007.

[5] J. G. Lamm, T. Weilkiens, “Functional architectures in SysML,” in Tag
des Systems Engineering 2010, M. Maurer and S.-O. Schulze, Eds.
München: Carl Hanser Verlag, 2010, pp. 109–118.

[6] J. A. Estefan, “Survey of model-based systems engineering (MBSE)
methodologies,” INCOSE MBSE Initiative. Seattle: International
Council on Systems Engineering, 2008.

[7] B. Lucero, V. K. Viswanathan, J. S. Linsey, C. J. Turner, “Identifying
critical functions for use across engineering design domains,” Journal
of Mechanical Design, vol. 136, pp. 121101/1–11, 2014.

[8] M. Agyemang, J. Linsey, C. J. Turner, “Transforming functional
models to critical chain models via expert knowledge and automatic
parsing rules for design analogy identification,” Artificial Intelligence
for Engineering Design, Analysis and Manufacturing, vol. 31, pp. 501–
511, 2017.

[9] G. Telleschi, A. Caroni, E. Willingham, P.-H. Pradel, “Reference
missile functional architecture, addressing design in a multinational
defense company,” in Proceedings of the 4th INCOSE Italia
Conference on Systems Engineering (CIISE), E. Mancin, A. Garro, L.
Tirone, D. Fierro, P. Gaudenzi, A. Falcone, Eds. Aachen: RWTH
Aachen, 2018. pp. 31–37.

[10] S. Behere, M. Törngren, “A functional reference architecture for
autonomous driving”, Information and Software Technology, vol. 73,
pp. 136–150, 2016.

[11] T. Weilkiens, SYSMOD - The systems modeling toolbox: Pragmatic
MBSE with SysML, 3rd ed. MBSE4U, 2020.

[12] A. Albers, N. Bursac, E. Wintergerst, “Product generation development
– importance and challenges from a design research perspective,” in
New Developments in Mechanics and Mechanical Engineering, 2015,
pp. 16–21.

[13] I. M. Mactaggart, C. Eckert, H. Lockett, “Analysis of functional
reference architecture through an industry lens,” Proceedings of the
International Conference on Engineering Design (ICED21), vol. 1, pp.
467–476, 2021.

[14] G. Pahl, W. Beitz, J. Feldhusen, K.-H. Grote, Engineering design: A
systematic approach, 3rd ed. London: Springer-Verlag, 2007.

[15] N. Crilly, “Function propagation through nested systems,” Design
Studies, vol. 34, pp. 216–242, 2013.

[16] Verein Deutscher Ingenieure, VDI 2221: Systematic approach to the
development and design of technical systems and products. Berlin:
Beuth Verlag, 1993.

[17] M. Hundal, “A systematic method for developing function structures,
solutions and concept variants,” Mech Mach Theory, vol. 25, pp. 243–
256, 1990.

[18] J. Hirtz, R. B. Stone, D. A. McAdams, S. Szykman, K. L. Wood, “A
functional basis for engineering design: Reconciling and evolving
previous efforts,” Research in Engineering Design, vol. 13, pp. 65–82,
2002.

[19] K. Pohl, H. Hönninger, R. Achatz, M. Broy. Model-based engineering
of embedded systems: The SPES 2020 methodology. Berlin,
Heidelberg: Springer-Verlag, 2012.

[20] D. D. Walden, G. J. Roedler, K. J. Forsberg, R. Douglas Hamelin, T.
M. Shortell, Systems engineering handbook: A guide for system life
cycle. Hoboken: John Wiley & Sons, 2015.

[21] J. Holt. Systems Engineering Demystified. Birmingham: Packt
Publishing, 2021.

[22] J. Tang, S. Zhu, R. Faudou, J.-M. Gauthier, „An MBSE framework to
support agile functional definition of an avionics system,” in Complex
Systems Design & Management, E. Bonjour, D. Krob, L. Palladino, F.
Stephan, Eds. Cham: Springer, 2018, pp. 168–178.

[23] G. A. Miller, “The magical number seven, plus or minus two: Some
limits on our capacity for processing information,” Psychological
Review, vol. 63, pp. 81–97, 1956.

